DWA: Dielectric Wakefield Acceleration

STUDIES OF WAKE FIELDS SET UP BY RELATIVISTIC ELECTRON BUNCHES IN A CYLINDRICAL DIELECTRIC-LINED WAVEGUIDE AND APPLICATION TO ACCELERATOR PHYSICS

Portion of the Doctoral thesis

project for

Project advisor: Thomas C. Marshall

Sergey V. Shchelkunov,

The wake field has a near-periodic pattern; E-lines of the radiation field is shown [ref: "Theory of Wake fields in a Dielectric- Lined Waveguide", by S.Y. Park and J.L. Hirshfield, Phys. Rev. E 62, 1266-1283, (2000)]

Project Topics:

- 1) <u>experimental demonstration of constructive superposition</u> of wake-fields set up by consecutive drive bunches, which is the mechanism that creates high acceleration fields in DWAs
 - *) S.V. Shchelkunov, T. C. Marshall, M.A. Babzien, J.L. Hirshfield, and M.A. LaPointe, PAC 2005 Conf. Proc. TPAE063
 - **) Phys. Rev. ST Accel. Beams, with reviewers
- 2) development of <u>a nondestructive technique</u> to measure bunch RMS-length in the psec range and below (~200fsec), by measuring the high-frequency spectrum of wake field radiation
 - *) S.V. Shchelkunov, T. C. Marshall, J.L. Hirshfield, and M.A. LaPointe, AIP Conf. Proc. 737, 421 (2004), edited by V. Yakimenko
 - **) Phys. Rev. ST Accel. Beams 8, 062801 (2005)
- 3) quantitative behavior of the dielectric wake field accelerator performance vs. the parameters

superposition of wake-fields set up by consecutive drive bunches

Dielectric Wake Field Apparatus (DWA) used for this experiment

Schematic of experiment

?: Is the bunch spacing the same as the laser pulse spacing A: No

increment in bunch spacing

≈

increment in laser spacing

$$\varphi_{\text{gun}} \sim 57^{\circ}$$
 $\varphi_{\text{linac}} \sim -88.5^{\circ}$
 $E_{\text{gun}} \sim 51 \text{MV/m}$
 $E_{\text{linac}} \sim 7.94 \text{MV/m}$

increment in bunch spacing

≈

1.5× increment in laser spacing

Charges of the 2^{nd} and 1^{st} bunches (the accuracy $\approx \pm 3\%$).

Measured difference in energy losses W(2) - W(1), vs. the bunch spacing. RMS-length = 5.4 \pm 0.2psec. The solid line represents the best theoretical fit if L = 700.28psec + 3.6psec (or, equivalently, L = 20.994cm + 1080μ m).

Measured difference in energy losses W(2) - W(1), vs. the bunch spacing. RMS-length $\sigma_L = 6.0 \pm 0.43$ psec. The solid line represents the best theoretical fit if L = 700.28psec+ 3.7psec (or, equivalently, L = 20.994cm + 1110 μ m).

From the frequency measurement [J-M. Fang], L = 700.28psec + $\Delta L = 700.28$ psec + $\Delta L = 700.28$ psec + $\Delta L = 100.28$ psec + $\Delta L = 1$

Our observational technique has two important advantages:

- a) the wake field period can be established with excellent accuracy;
- b) agreement between theory and experiment can be verified when the bunch spacing is different from the wake field period (i.e. $S_{bunch} \neq L$)

Experimental evidence of constructive superposition

1. Argonne Group

"Measurement Of the Longitudinal Wakefields In a Multimode, Delectric Wakefield Accelerator Driven By a Train Of Electron Bunches', by J.G. Power, M.E. Conde, W.Gai, R. Konecny, and P. Schoessow, Phys. Rev. ST Accel. Beams 3, 101302, (2000)

2. Our Group

"Experimental Observation of Constructive Superposition of Wake Fields Generated by Electron Bunches in a Dielectric-Lined Waveguide", by S.V. Shchelkunov, T.C. Marshall, J.L. Hirshfield, M.A. Babzien, and M.A. LaPointe, (in review with PRST)

	ε	inner	bunch RMS-	Number of	Wake-field	Peak Accel.
		radius,	length,	excited	full footprint,	Field after
		[mm]	[psec]/[mm]	eigenmodes	[psec]/[mm]	one bunch
				ð	נ גנ	$[MV/m \cdot nC]$
Argonne	38.1 ^a	5	30 / <mark>9</mark>	~10	74 / <mark>22</mark>	0.09
Our	9.65 ^b	1.5	6 /1.8	~40	13.5 / 4	2.65

a) material CaTiO₃ – LaAlO₃; b) material Al₂O₃

$$\Delta X$$
, $\Delta Y = D_{X,Y} \cdot \frac{W_2 - W_1}{W_1}$

where $W_2 - W_1$ happens every time when

the bunch spacing \neq RF period \times N

ATF laser upgrade (2-3) bunches \rightarrow 10-15 bunches

Truly multi bunch experiment

Non-destructive diagnostic for short bunches

*) AIP Conf. Proc. 737, 421 (2004) **) Phys. Rev. ST Accel. Beams 8, 062801 (2005)

MM-wave detector signal (divisions: $5 \text{ mV} \times 1 \text{ nsec}$)

for a bunch distributed along a RMS-length

$$\Delta z = 2\sqrt{\langle z^2 \rangle - \langle z \rangle^2}$$

one bunch: Δz_1 , Q_1 another: Δz_2 , Q_2

$$\frac{\sum_{m=m1}^{m2} T(\Omega_i, \omega_m) P(\omega_m, \Delta z_1, Q_1)}{\sum_{m=m1}^{m2} T(\Omega_i, \omega_m) P(\omega_m, \Delta z_2, Q_2)} = \frac{D_{i,1}}{D_{i,2}}$$

FEATURES of METHOD

- 1) Nondestructive TECHNIQUE
- 2) Is not sensitive to the bunch longitudinal and radial distribution
- 3)• Allows finding the RMS- length and charge
- 4) The accuracy $\delta \Delta z / \Delta z$ of measurement $\delta \Delta z / \Delta z = (C_{\Delta z} / \Delta z^2) \cdot (\Delta D / 2\overline{D})$
- 5)• The minimum RMS length one can resolve $\Delta z_{MIN} = \sqrt{C_{\Delta z} \cdot (\Delta D / 2\overline{D})}$ $\Delta D/2D \approx 1.5\%$

with filtering to 120 GHz
$$C_{\Delta Z} = 13.8 \text{ psec}^2$$
 $\delta \Delta z / \Delta z = \delta \Delta z / 3 \text{ psec} \approx 2\%$ $\Delta z_{\text{MIN}} \approx 1/2 \text{ psec}$ with filtering to 300 GHz $C_{\Delta Z} = 2.4 \text{ psec}^2$ $\delta \Delta z / \Delta z = \delta \Delta z / 3 \text{ psec} \approx 0.4\%$ $\Delta z_{\text{MIN}} \approx 190 \text{ fsec}$

6) • spectrum of many bunches \rightarrow with odd number (3) spaced by L, spectrum resembles that of a single bunch

Superposition of Wake Field + Radiation Spectrum Measurement

=

Correct understanding of interaction between wake fields and electron bunches →

Tool to predict behavior and design Dielectric Wake Field Accelerator (accelerating gradient, efficiency, energy spread vs. parameters)

Problems to solve

Electric threshold + Tuning the Wake Field Period